a boy’s math playground; math experiment
Cody Luo(cody@ustc.edu)
https://github.com/a-boy/playmath
https://nbviewer.jupyter.org/github/a-boy/playmath/tree/master/
:star: 2019-09-02, I proved Goldbach’s Conjecture!
stage12-try to prov Goldbach Conjecture.ipynb
Note: in Sagemath env to run the codes
Goldbach Conjecture Inequality 1: gold(n) < prime_pi(n)+sigma(n,0)
gold(n): the min non-negative integer g
makes that both n-g
and n+g
are primes
prime_pi(n): the count of primes in 1..n
sigma(n,0): the count of n.divisors()
gold(n) < prime_pi(n), while n>344
gold(n) < prime_pi(n)*4395/3449751 ≈ prime_pi(n)*0.0013, while n>57989356
Goldbach Conjecture Inequality 2: gold(n) < prime_pi(prime_pi(n)+n)
:star: 2019-10-28, I solved 3n+1 Problem!
http://a-boy.tk/playmath/stage26-3n%2B1conjecture/proving-3n%2B1-conjecture.html
# Syracuse function g(n)
def g(n):
while n%2==0 : n/=2
n=3*n+1
while n%2==0 : n/=2
return n
Collatz-Syracuse Decent Theorem: For any odd positive integer n=2*k+1, it exists s1,s1<=g(n)<=(3*n+1)/2
to make nest(g,s1,n)==1
;
Except n=27 or 31, it will get a less number m, m<n before n
times iterately calling g(x).
(n,f(n),g(n),(3*n+1)/2,s(n))
(27, 82, 41, 41, (37, 41))
(31, 94, 47, 47, (35, 39))
Collatz-Odd-Tree1.png
Collatz正奇数回归树生成规则(Collatz-Odd-Tree Generation Rule):
v(x)=(2*x-1)/3 or (4*x-1)/3
产生h(x)=4*x+1
迭代陆续产生, 因为 3(4x+1)+1 = 12x+4 = 4(3x+1) 。证明3n+1猜想成立也就只需证明Collatz-Odd-Tree中逆向生成了所有的正奇数。
显然,从x0=1
出发,通过 h(x)=4*x+1
和 v(x)=(2*x-1)/3 or (4*x-1)/3
反复迭代,会生成所有形如4k+1和4k-1的数,即所有正奇数。Collatz猜想证明完毕□
证明孪生质数猜想,并提出更普遍的规律:任意质数阶差子段如果出现了两遍就会继续出现无数遍,例如{2},{4},{2*n},{6,6},{2,4,2},......
:star: 2010-02-04, I discovered Prime-Gap-Inequality: The i-th prime gap p[i+1]-p[i]<=i
In other words, range(n,n+primepi(n))
contains one or more primes. So, the i-th prime p[i]<=1+2+...+ i-1 + p[1] = i*(i-1)/2 +2
:star: I discovered Bread Curve and Bread Model by chance in 2011:
def r(theta):= nest(sin,theta,1000)
polar_plot(r(theta),(theta,0,2*PI))
before2011/果中的泪滴.png
:star: 2022-02-07, I improved Oppermann’s Conjecture!
NextPrime-Of-Square-Inequality: next_prime(n^2) - n^2 <= 1+euler_phi(n)
3 | ||||||||||
4 | 5 | |||||||||
5 | 6 | 7 | ||||||||
7 | 8 | 9 | 11 | |||||||
8 | 9 | 10 | 12 | 13 | ||||||
10 | 11 | 12 | 14 | 15 | 17 | |||||
11 | 12 | 13 | 15 | 16 | 18 | 19 | ||||
13 | 14 | 15 | 17 | 18 | 20 | 21 | 23 | |||
16 | 17 | 18 | 20 | 21 | 23 | 24 | 26 | 29 | ||
17 | 18 | 19 | 21 | 22 | 24 | 25 | 27 | 30 | 31 | |
20 | 21 | 22 | 24 | 25 | 27 | 28 | 30 | 33 | 34 | 37 |
n>=3, let p=nextprime(n!)-n!
, then p is always prime or 1, because p is less than ` nextprime(n)^2 , very often
p<n^2 ` .
m n R(m,n) Reference
3 3 6 Greenwood and Gleason 1955
3 4 9 Greenwood and Gleason 1955
3 5 14 Greenwood and Gleason 1955
3 6 18 Graver and Yackel 1968
3 7 23 Kalbfleisch 1966
3 8 28 McKay and Min 1992
3 9 36 Grinstead and Roberts 1982
3 10 [40, 43] Exoo 1989c, Radziszowski and Kreher 1988
3 11 [46, 51] Radziszowski and Kreher 1988
3 12 [52, 59] Exoo 1993, Radziszowski and Kreher 1988, Exoo 1998, Lesser 2001
3 13 [59, 69] Piwakowski 1996, Radziszowski and Kreher 1988
5 5 [43, 49] Exoo 1989b, McKay and Radziszowski 1995
6 6 [102, 165] Kalbfleisch 1965, Mackey 1994
7 7 [205, 540] Hill and Irving 1982, Giraud 1973
Guess: for any ineteger n>=1, RamseyNumber(n+1,n+1)-1 = S(n,n) contains only the factors of Fermat Numbers ` F[m]=2^2^m+1 `, {1,2,3,5,17,257,641,65537,…} S(2,2)=5, S(3,3)=17, I guess S(4,4)=45
groupby
on prime gap sequence, …define the integer sequence x[n+1]:=x[n]^2+1
, if take x[0]>1, then x[5] is very often composite.
定义:二密分解 n=q1*q2
, q1
取小于或等于√n
的最大因数, q2
取大于或等于√n
的最小因数。
是否值得尝试,使用二密分解或p-密分解的一些性质证明费马大定理? 抛开Wiles的复杂理论和过程?
2*k-1
如果是质数则二进制小数点后第k位为1,否则为0const OPPC = .0111 0110 1101 0011
1357 9
1 2 4 135 60753
1|1.0|0100|10000111|1110110101010001|00010000101101000110000100011010011000100110001100110001010001011100000001101110000011100110100010010100100000010010011100000100010001010011001111100110001110100000000100000101110111110101001100011101100010011100110110010001001
https://math.stackexchange.com/questions/3503947
2^F[2!+1]-1 = 3, 2^F[3!+1]-1= 2^13-1= 8191 are two known Ultra-Primes! I guess after 3, 8191 there are more prime heros! ```
感谢你的赞助和支持,希望我们每天都能做得更好!!!