playmath

a boy’s math playground; math experiment

Cody Luo(cody@ustc.edu)

https://github.com/a-boy/playmath
https://nbviewer.jupyter.org/github/a-boy/playmath/tree/master/

Records:

# Syracuse function g(n)
def g(n):
    while n%2==0 : n/=2
    n=3*n+1
    while n%2==0 : n/=2
    return n

Collatz-Syracuse Decent Theorem: For any odd positive integer n=2*k+1, it exists s1,s1<=g(n)<=(3*n+1)/2 to make nest(g,s1,n)==1;
Except n=27 or 31, it will get a less number m, m<n before n times iterately calling g(x).

(n,f(n),g(n),(3*n+1)/2,s(n))  
(27, 82, 41, 41, (37, 41))  
(31, 94, 47, 47, (35, 39))  

part of Collatz Odd Tree Collatz-Odd-Tree1.png

Collatz正奇数回归树生成规则(Collatz-Odd-Tree Generation Rule):

  1. x在完全的Collatz-Odd-Tree中是叶节点 iff (x%3==0)
  2. 每个节点的长子由 v(x)=(2*x-1)/3 or (4*x-1)/3 产生
  3. 其余每个小兄弟由 h(x)=4*x+1 迭代陆续产生, 因为 3(4x+1)+1 = 12x+4 = 4(3x+1) 。

证明3n+1猜想成立也就只需证明Collatz-Odd-Tree中逆向生成了所有的正奇数。 显然,从x0=1出发,通过 h(x)=4*x+1v(x)=(2*x-1)/3 or (4*x-1)/3 反复迭代,会生成所有形如4k+1和4k-1的数,即所有正奇数。Collatz猜想证明完毕□

证明孪生质数猜想,并提出更普遍的规律:任意质数阶差子段如果出现了两遍就会继续出现无数遍,例如{2},{4},{2*n},{6,6},{2,4,2},......

def r(theta):= nest(sin,theta,1000)
polar_plot(r(theta),(theta,0,2*PI))

NextPrime-Of-Square-Inequality: next_prime(n^2) - n^2 <= 1+euler_phi(n)

idea:(mailto:a_boy@live.com)

                     
3                    
4 5                  
5 6 7                
7 8 9 11              
8 9 10 12 13            
10 11 12 14 15 17          
11 12 13 15 16 18 19        
13 14 15 17 18 20 21 23      
16 17 18 20 21 23 24 26 29    
17 18 19 21 22 24 25 27 30 31  
20 21 22 24 25 27 28 30 33 34 37
m	n	R(m,n)	Reference
3	3	6	Greenwood and Gleason 1955
3	4	9	Greenwood and Gleason 1955
3	5	14	Greenwood and Gleason 1955
3	6	18	Graver and Yackel 1968
3	7	23	Kalbfleisch 1966
3	8	28	McKay and Min 1992
3	9	36	Grinstead and Roberts 1982
3	10	[40, 43]	Exoo 1989c, Radziszowski and Kreher 1988
3	11	[46, 51]	Radziszowski and Kreher 1988
3	12	[52, 59]	Exoo 1993, Radziszowski and Kreher 1988, Exoo 1998, Lesser 2001
3	13	[59, 69]	Piwakowski 1996, Radziszowski and Kreher 1988

5	5	[43, 49]	Exoo 1989b, McKay and Radziszowski 1995
6	6	[102, 165]	Kalbfleisch 1965, Mackey 1994
7	7	[205, 540]	Hill and Irving 1982, Giraud 1973

Guess: for any ineteger n>=1, RamseyNumber(n+1,n+1)-1 = S(n,n) contains only the factors of Fermat Numbers ` F[m]=2^2^m+1 `, {1,2,3,5,17,257,641,65537,…} S(2,2)=5, S(3,3)=17, I guess S(4,4)=45

const OPPC = .0111 0110 1101 0011
               1357 9

https://math.stackexchange.com/questions/3503947

2^F[2!+1]-1 = 3, 2^F[3!+1]-1= 2^13-1= 8191 are two known Ultra-Primes! I guess after 3, 8191 there are more prime heros! ```

math tools

赞助支持

感谢你的赞助和支持,希望我们每天都能做得更好!!!